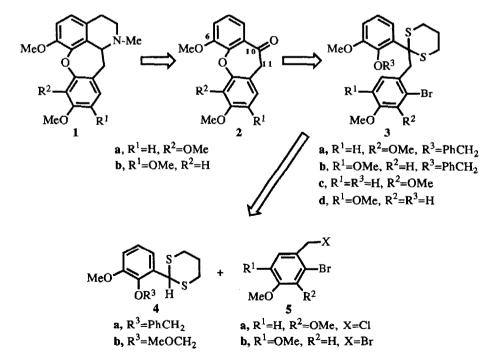
Tetrahedron Letters, Vol.30, No.49, pp 6927-6928, 1989 Printed in Great Britain


A NEW SYNTHESIS OF 10,11-DIHYDRODIBENZ(b,f)OXEPIN-10-ONES: KEY INTERMEDIATES TO CULARINE ALKALOIDS

Carlos Lamas, Alberto García, Luis Castedo* and Domingo Domínguez

Departamento de Química Orgánica. Facultad de Química y Sección de Alcaloides del C.S.I.C. Santiago de Compostela. Spain

Abstract: A new synthesis of the title compounds is described, providing a route to key intermediates for the preparation of cularine alkaloids.

The cularines are a large group of isoquinoline alkaloids with a dihydrodibenzoxepine system in their skeletons.¹ The first synthesis of cularine² (1b) assembled the nitrogenated ring on the dibenzoxepinone 2b (Manske's ketone), which was prepared by intramolecular acylation of the corresponding *o*-phenoxyphenylacetic acid. Since the yield of the latter reaction is poor when there is an oxygenated substituent *meta* to the cyclization point (C6 in 2)^{3,4} we have developed a more efficient approach based on the formation of the C10-C11 bond by alkylation of the lithium derivative of the dithiane 4 with the benzylic halides 5, followed by an intramolecular Ullmann reaction in 3.

Compound **4a⁵** was deprotonated with n-BuLi in THF at -78°C, and after 1 h. a solution of chloride **5a⁶** in THF was added. The reaction mixture was allowed to rise slowly to room temperature, giving **3a** in 69% yield; use of bromide **5b⁷** afforded **3b** in

58% yield. Refluxing **3a** with EtOH/conc. HCl for 1h. removed the benzyl and dithiane groups to give the phenolic ketone in 92% yield, but Ullmann reaction of the latter (K₂CO₃, CuO, pyridine, reflux, 1h.) brought about cyclization via the carbonyl group to afford 6,7-dimethoxy-2-(2'-hydroxy-3'-methoxyphenyl)benzofurane⁸ in 85% yield.⁹

Though we were able to selectively remove the benzyl group of **3a** while preserving the dithioacetal,¹⁰ it is more convenient to be able to use a group that is more easily removed. To this end, the 2-lithio derivative (n-BuLi, THF, -78°C, 2 h.) of the 1,3-dithiane **4b**⁵ was alkylated with the benzylic halides **5**; after work-up, the crude mixture was hydrolysed under Argon atmosphere with HCl(5%)/THF (1:5 v/v, r.t., 20h.); and chromatography of the resulting product (neutral alumina grade II) gave **3c** and **3d** in 64% and 57% yields respectively.⁹ The bromophenol **3c** was refluxed for 1h. with anhydrous K₂CO₃ (5 eq.) and CuO (3 eq.) in dry pyridine under Argon atmosphere to yield a mixture which showed two main products by t.l.c. that were highly fluorescent when excited at 360 nm.¹¹ However, hydrolysis of this crude mixture with acetonitrile/conc. HCl (2:1 v/v, reflux, 2h.) in the presence of glyoxylic acid (to trap 1,3-propanedithiol) followed by column chromatography (silicagel) afforded **2a** (60% overall yield; mp. 98-99°C).^{9,12} Compound **2b** was obtained similarly from **3d**, in 48% overall yield.⁹

The above new, straightforward route to Manske's ketone (2b) and its isomer 2a opens the way to the isocularine alkaloids.¹ It also seems likely to be applicable to the synthesis of oxepinones 2 with non-methoxyl substituents, so leading to many other naturally occurring cularines; this is currently being investigated in our laboratories.

Acknowledgments: We thank the Xunta de Galicia for grants to C. L. and A. G., and also for financial support.

REFERENCES AND NOTES

 L. Castedo, "The Chemistry and Pharmacology of Cularine Alkaloids", in "The Chemistry and Biology of Isoquinoline Alkaloids", ed. Philipson et al., Springer-Verlag, 1985.

L. Castedo and R. Suau, "The Cularine Alkaloids", in "The Alkaloids", vol. 29, ed. A. Brossi, Academic Press, 1986.

- 2.- T. Kametani and K. Fukumoto, J. Chem. Soc., 4289 (1963)
- 3.- M. Kulka and R.H.F. Manske, J. Am. Chem. Soc. 75, 1322 (1953)
- 4.- I. Noguchi and D.B. MacLean, Can. J. Chem. 53, 125 (1975)
- 5.- The corresponding protected o-vanillin in chloroform, was treated at rt for 24h.with 1.05 eq of 1,3-propanedithiol in the presence of BF₃•Et₂O (0.2 eq.) and Na₂SO₄.
- 6.- I. Baxter, L.T. Hallan and G.A. Swan, J. Chem. Soc., 3645 (1965)
- 7.- G. Dai-Ho and P. S. Mariano, J. Org. Chem. 53, 5113 (1988)
- 8.- A related finding was reported recently by J. Grimshaw and N. Thompson, J.Chem.Soc.Chem.Commun., 240 (1987)
- All new compounds were fully characterized spectroscopically and gave satisfactory elemental analyses.
- 10.- K. Fuji, K. Ichikawa, M. Node and E. Fujita, J. Org. Chem. 44, 1661 (1979)
- 11.- In one experiment the fast-moving compound was isolated and its NMR (¹H and ¹³C) showed no signal for the methylene group in the aliphatic region but an additional one in the aromatic region. This suggests a dibenzoxepine structure as the result of a β-elimination of one sulphur atom. The other fluorescent compound might have a similar structure with a different oxidation level at the sulphur atoms.
- 12.- 2a: ¹HNMR (250 MHz, CDCl₃), 3.83 (s, 3H, OMe), 3.96 (s, 3H, OMe), 4.01 (s, 3H, OMe), 4.02 (s, 2H, -CH₂-), 6.75 (d, 1H, J:8.5Hz), 6.94 (d, 1H, J:8.5Hz), 7.0-7.2 (m, 2H), and 7.62 (dd, 1H, J:7.5Hz and 2.1Hz). ¹³CNMR (62.83 Mz, CDCl₃), 47.65, 56.32, 56.59, 61.59, 109.97, 117.28, 120.30, 121.49, 123.14, 123.51, 127.72,141.35, 150.25, 151.12, 151.58, 153.01 and 190.60 ppm.

(Received in UK 3 October 1989)